Gauss Lemma and Law of Quadratic Reciprocity
نویسندگان
چکیده
The papers [20], [10], [9], [11], [4], [1], [2], [17], [8], [19], [7], [16], [13], [21], [22], [5], [18], [3], [15], [6], and [23] provide the terminology and notation for this paper. For simplicity, we adopt the following convention: i, i1, i2, i3, j, a, b, x denote integers, d, e, n denote natural numbers, f , f ′ denote finite sequences of elements of Z, g, g1, g2 denote finite sequences of elements of R, and p denotes a prime number. We now state two propositions: (1) If i1 | i2 and i1 | i3, then i1 | i2 − i3. (2) If i | a and i | a− b, then i | b. Let us consider f . The functor PZ(f) yields a function from Z into Z and is defined by the condition (Def. 1).
منابع مشابه
Quadratic Reciprocity Revisited
We show that Gauss' Lemma implies Euler's version of the law of qua-dratic reciprocity directly, this yields a very simple proof of the well-known law. We also derive a new related identity.
متن کاملQuadratic Reciprocity
Quadratic Reciprocity is arguably the most important theorem taught in an elementary number theory course. Since Gauss’ original 1796 proof (by induction!) appeared, more than 100 different proofs have been discovered. Here I present one proof which is not particularly well-known, due to George Rousseau [2]. (The proof was rediscovered more recently by (then) high-schooler Tim Kunisky [1].) Alt...
متن کاملSome results of number theory
This is a collection of formalized proofs of many results of number theory. The proofs of the Chinese Remainder Theorem and Wilson’s Theorem are due to Rasmussen. The proof of Gauss’s law of quadratic reciprocity is due to Avigad, Gray and Kramer. Proofs can be found in most introductory number theory textbooks; Goldman’s The Queen of Mathematics: a Historically Motivated Guide to Number Theory...
متن کاملQuadratic Reciprocity and Sign of Gauss Sum via the Finite Weil Representation
We give new proofs of two basic results in number theory: The law of quadratic reciprocity and the sign of the Gauss sum. We show that these results are encoded in the relation between the discrete Fourier transform and the action of the Weyl element in the Weil representation modulo p, q and pq. 0. Introduction Two basic results due to Gauss are the quadratic reciprocity law and the sign of th...
متن کاملQuadratic Reciprocity I
We now come to the most important result in our course: the law of quadratic reciprocity, or, as Gauss called it, the aureum theorema (“golden theorem”). Many beginning students of number theory have a hard time appreciating this golden theorem. I find this quite understandable, as many first courses do not properly prepare for the result by discussing enough of the earlier work which makes qua...
متن کاملQuadratic Reciprocity via Linear Algebra
We adapt a method of Schur to determine the sign in the quadratic Gauss sum and derive from this, the law of quadratic reciprocity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Formalized Mathematics
دوره 16 شماره
صفحات -
تاریخ انتشار 2008